

Computer Controlled **Pipe Network Unit**, with Hydraulics Bench (FME00),

with SCADA

① Unit: AMTC. Computer Controlled Pipe Network Unit, with Hydraulics Bench (FME00)

* Minimum supply always includes: 1 + 2 + 3 + 4 + 5 + 6 (Computer not included in the supply)

Key features:

- > Advanced Real-Time SCADA.
- ➤ Open Control + Multicontrol + Real-Time Control.
- Specialized EDIBON Control Software based on LabVIEW.
- > National Instruments Data Acquisition board (250 KS/s, kilo samples per second).
- Calibration exercises, which are included, teach the user how to calibrate a sensor and the importance of checking the accuracy of the sensors before taking measurements.
- > Projector and/or electronic whiteboard compatibility allows the unit to be explained and demonstrated to an entire class at one time.
- Capable of doing applied research, real industrial simulation, training courses, etc.
- > Remote operation and control by the user and remote control for EDIBON technical support, are always included.
- > Totally safe, utilizing 4 safety systems (Mechanical, Electrical, Electronic & Software).
- > Designed and manufactured under several quality standards.
- Optional ICAI software to create, edit and carry out practical exercises, tests, exams, calculations, etc. Apart from monitoring user's knowledge and progress reached.
- > This unit has been designed for future expansion and integration. A common expansion is the EDIBON Scada-Net (ESN) System which enables multiple students to simultaneously operate many units in a network.

OPEN CONTROL
MULTICONTROL
REAL TIME CONTROL

www.edibon.com

\$8.- FLUID MECHANICS

For more information about Key Features, click here

INTRODUCTION

The Computer Controlled Pipe Network Unit, with Hydraulics Bench (FME00), "AMTC", has been designed by EDIBON to enable different pipe network installations, measuring flow and pressure, and always using water as test fluid.

A typical case is, for instance, a water distribution network in a town. Prediction of pressure and flow and the variations of these parameters generated in the network are of great interest, because with these data, the type of pipes required for such network can be determined with more accuracy.

The objective of this unit is to simulate the problems that could originate in pipe networks, since pipes have different lengths and diameters, as it happens in the cities.

With these studies, the dimensions of the networks will be better understood, to obtain the flow and pressure required.

GENERAL DESCRIPTION

The Computer Controlled Pipe Network Unit, with Hydraulics Bench (FME00), "AMTC", consists of a pipe network, a lateral panel where all the elements to test are located and a hydraulics bench, which has all the elements and

The valves that some of the elements have in order to form the different circuits are On-Off valves, necessary to distribute the flow along the net.

accessories required for the unit to work autonomously.

The unit has a system of anti-blockage pressure takings, located upstream and downstream of each element that is going to be tested. All of them have a quick and easy connection to the pressure measurement devices of the unit.

The unit includes an Hydraulics Bench (FME00), that has a volumetric measuring system, consisting of a two-level tank. The small one is used to measure low flows and the big one, to measure higher flows. A gauge, which consists of a scale and a transparent tube is connected to a bypass on the base of tank and gives an instantaneous measurement of the water level.

AMTC detail

A centrifugal pump located inside the hydraulics bench is used to add energy to the fluid. The flow can be regulated by a control valve located on the hydraulics bench.

This Computer Controlled Unit is supplied with the EDIBON Computer Control System (SCADA), and includes: The unit itself + a Control Interface Box + a Data Acquisition Board + Computer Control, Data Acquisition and Data Management Software Packages, for controlling the process and all parameters involved in the process.

UNIT ELEMENTS ALLOCATION

With this unit there are several options and possibilities:

- Main items: 1, 2, 3, 4, 5 and 6. - Optional items: 7, 8, 9 and 10.

Let us describe first the main items (1 to 6):

①AMTC. Unit:

Anodized aluminum frame and panels made of painted steel.

The unit includes wheels to facilitate its mobility.

Main metallic elements made of stainless steel.

Diagram in the front panel with distribution of the elements similar to the real one.

Pipe network.

Lateral panel where all test elements are located.

Test pipes:

Aluminum pipe, 16 mm outer diameter.

PVC pipe, 25 mm outer diameter.

PVC pipe, 16 mm outer diameter.

PVC pipe, 20 mm outer diameter.

Methacrylate pipe, 16 mm outer diameter.

Test connections:

Connection of 4 pipes with drain or outlet valve.

Connection of 3 pipes.

Straight connection of a pipe with outlet valve.

Pipe connection with outlet pipe in the shape of a siphon.

Connection of 2 pipes with outlet valve. (3 units).

Connection of 2 pipes with pressure taking.

Connection of 2 pipes without pressure taking.

Pressure takings in the test elements.

Valves for distributing the flow to the network.

Two magnetic displacement sensors, range: 0 – 1 m. Two water manometers, length: 1000 mm.

Two pressure sensors, range: 0 - 30 PSI.

Flow sensor, range: $2-150\,$ l/min.

- Hydraulics Bench (FME00):

Mobile Hydraulics Bench, made in polyester reinforced with fibreglass, and mounted on wheels for its mobility.

Centrifugal pump, computer controlled, 0.37 KW, 30 – 80 I/min at 20.1 – 12.8 m.

Impeller made in stainless steel.

Sump tank, capacity: 165 l.

Small channel, capacity: 8 l.

Flow measurement: volumetric tank, gauged from 0 to 7 $\,$ I for low flow values and from 0 to 40 $\,$ I for high flow values.

Level tube with a scale that shows the water level in the upper tank.

Control valve for regulating the flow.

 $\label{eq:manufactured} \mbox{Manufactured with corrosion resistant materials ensuring a long life of the unit.}$

The complete unit includes as well:

Advanced Real-Time SCADA.

Open Control + Multicontrol + Real-Time Control.

Specialized EDIBON Control Software based on LabVIEW.

National Instruments Data Acquisition board (250 KS/s, kilo samples per second).

Calibration exercises, which are included, teach the user how to calibrate a sensor and the importance of checking the accuracy of the sensors before taking measurements.

Projector and/or electronic whiteboard compatibility allows the unit to be explained and demonstrated to an entire class at one time.

Capable of doing applied research, real industrial simulation, training courses, etc.

Remote operation and control by the user and remote control for EDIBON technical support, are always included.

Totally safe, utilizing 4 safety systems (Mechanical, Electrical, Electronic & Software).

Designed and manufactured under several quality standards.

Optional ICAI software to create, edit and carry out practical exercises, tests, exams, calculations, etc. Apart from monitoring user's knowledge and progress reached.

This unit has been designed for future expansion and integration. A common expansion is the EDIBON Scada-Net (ESN) System which enables multiple students to simultaneously operate many units in a network.

Unit: AMTC

② AMTC/CIB. Control Interface Box:

The Control Interface Box is part of the SCADA system.

Control interface box with process diagram in the front panel and with the same distribution that the different elements located in the unit, for an easy understanding by the student.

All sensors, with their respective signals, are properly manipulated from -10V. to \pm 10V. computer output.

Sensors connectors in the interface have different pines numbers (from 2 to 16), to avoid connection errors.

Single cable between the control interface box and computer.

The unit control elements are permanently computer controlled, without necessity of changes or connections during the whole process test procedure.

Simultaneous visualization in the computer of all parameters involved in the process. Calibration of all sensors involved in the process.

Real time curves representation about system responses.

Storage of all the process data and results in a file.

Graphic representation, in real time, of all the process/system responses.

All the actuators' values can be changed at any time from the keyboard allowing the analysis about curves and responses of the whole process.

All the actuators and sensors values and their responses are displayed on only one screen in the computer.

Shield and filtered signals to avoid external interferences.

Real time computer control with flexibility of modifications from the computer keyboard of the parameters, at any moment during the process.

Real time computer control for pumps, compressors, heating elements, control valves, etc.

Real time computer control for parameters involved in the process simultaneously.

Open control allowing modifications, at any moment and in real time, of parameters involved in the process simultaneously.

Three safety levels, one mechanical in the unit, another electronic in the control interface and the third one in the control software.

③ DAB. Data Acquisition Board:

The Data Acquisition board is part of the SCADA system.

PCI Express Data acquisition board (National Instruments) to be placed in a computer slot. Bus PCI Express.

Analog input:

Number of channels = 16 single-ended or 8 differential. Resolution = 16 bits, 1 in 65536.

Sampling rate up to: $\underline{250 \text{ KS/s}}$ (kilo samples per second). Input range (V)= $\pm 10 \text{ V}$. Data transfers=DMA, interrupts, programmed I/O. DMA channels=6.

Analog output:

Number of channels=2. Resolution=16 bits, 1 in 65536.

Maximum output rate up to: 900 KS/s.

Output range (V)=±10 V. Data transfers=DMA, interrupts, programmed I/0.

Digital Input/Output:

Number of channels=24 inputs/outputs. D0 or DI Sample Clock frequency: 0 to 100 MHz.

Timing: Number of Counter/timers=4. Resolution: Counter/timers: 32 bits.

The Data Acquisition board model may change at any moment, providing the same or better features than those required for the unit.

MAMTC/CCSOF. Computer Control + Data Acquisition + Data Management Software:

The three softwares are part of the SCADA system.

Compatible with actual Windows operating systems. Graphic and intuitive simulation of the process in screen. Compatible with the industry standards.

Registration and visualization of all process variables in an automatic and simultaneous way.

Flexible, open and multicontrol software, developed with actual windows graphic systems, acting simultaneously on all process parameters.

Management, processing, comparison and storage of data.

Sampling velocity up to 250 KS/s (kilo samples per second).

Calibration system for the sensors involved in the process.

It allows the registration of the alarms state and the graphic representation in real time. Comparative analysis of the obtained data, after the process and modification of the conditions

during the process. Open software, allowing the teacher to modify texts, instructions. Teacher's and student's passwords to facilitate the teacher's control on the student, and allowing the access to

different work levels. This unit allows the 30 students of the classroom to visualize simultaneously all the results and the manipulation of the unit, during the process, by using a projector or an electronic whiteboard.

AMTC/CIB

DAB

AMTC/CCSOF

(5) Cables and Accessories, for normal operation.

⑥ Manuals:

This unit is **supplied with 8 manuals**: Required Services, Assembly and Installation, Interface and Control Software, Starting-up, Safety, Maintenance, Calibration & Practices Manuals.

*References 1 to 6 are the main items: AMTC + AMTC/CIB + DAB + AMTC/CCSOF + Cables and Accessories + Manuals are included in the minimum supply for enabling normal and full operation.

EXERCISES AND PRACTICAL POSSIBILITIES TO BE DONE WITH THE MAIN ITEMS

- 1.- Head losses in a PVC pipe.
- 2.- Head losses in an aluminum pipe.
- 3.- Head losses in a methacrylate pipe.
- 4.- Study of head losses in pipes of the same material.
- 5.- Study of head losses in function of the material.
- 6.- Friction coefficient in a PVC pipe.
- 7.- Friction coefficient in an aluminum pipe.
- 8.- Friction coefficient in a methacrylate pipe.
- 9.- Study of the friction coefficient in function of the material.
- 10.-Study of the friction coefficient in function of the diameter.
- 11.-Parallel network configuration for pipes of same material and different diameter.
- 12.-Parallel network configuration for pipes of different material and same diameter.
- 13.-Series network configuration for pipes of different material and different diameter.
- 14.-Series network configuration for pipes of different material and same diameter.

Additional practical possibilities:

15.-Sensors calibration.

Other possibilities to be done with this Unit:

16.-Many students view results simultaneously.

To view all results in real time in the classroom by means of a projector or an electronic whiteboard.

17.-Open Control, Multicontrol and Real Time Control.

This unit allows intrinsically and/or extrinsically to change the span, gains; proportional, integral, derivative parameters; etc, in real time.

- 18.-The Computer Control System with SCADA allows a real industrial simulation.
- 19.-This unit is totally safe as uses mechanical, electrical/electronic, and software safety devices.
- 20.-This unit can be used for doing applied research.
- 21.-This unit can be used for giving training courses to Industries even to other Technical Education Institutions.
- 22.-Control of the AMTC unit process through the control interface box without the computer.
- 23.-Visualization of all the sensors values used in the AMTC unit process.
- Several other exercises can be done and designed by the user.

REQUIRED SERVICES

- Electrical supply: single-phase 200 VAC 240 VAC/50 Hz or 110 VAC 127 VAC/60 Hz.
- Water supply and drain.
- Computer.

DIMENSIONS AND WEIGHTS

AMTC:

Unit:

-Dimensions: 1500 x 1000 x 1700 mm approx.

(59.05 x 39.37 x 66.93 inches approx.)

-Weight: 100 kg approx.

(220 pounds approx.)

Hydraulics Bench (FME00):

-Dimensions: 1130 x 730 x 1000 mm approx.

(44.48 x 28.74 x 39.37 inches approx).

-Weight: 70 kg approx.

(154.32 pounds approx).

Control-Interface Box:

-Dimensions: 490 x 330 x 310 mm approx.

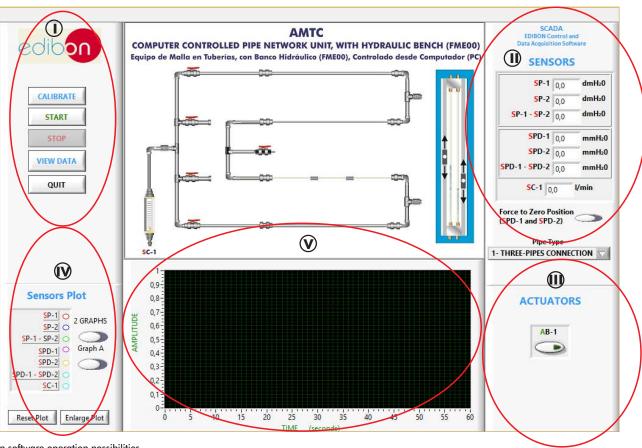
(19.29 x 12.99 x 12.2 inches approx.)

-Weight: 10 kg approx.

(22 pounds approx.).

SIMILAR UNITS AVAILABLE

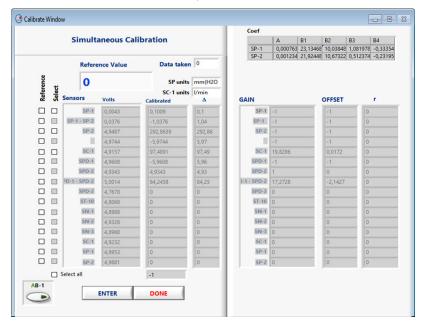
Offered in this catalog:

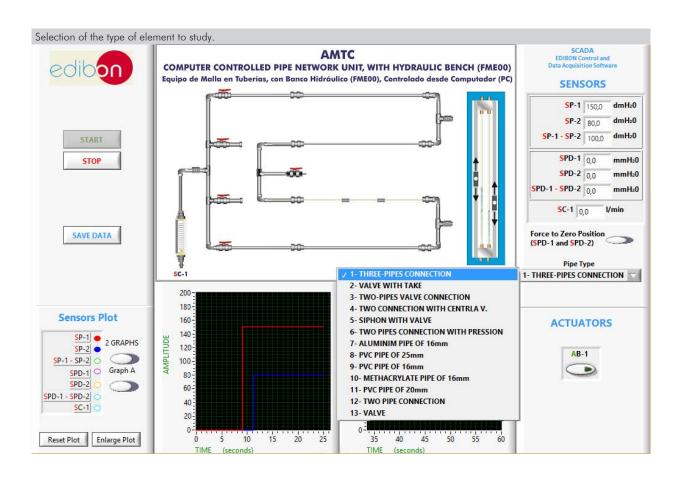

- AMTC. Computer Controlled Pipe Network Unit, with Hydraulics Bench (FME00).

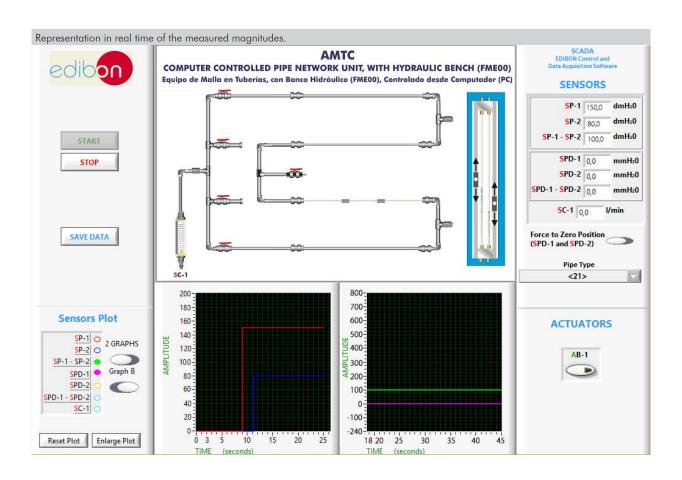
Offered in other catalogs:

5

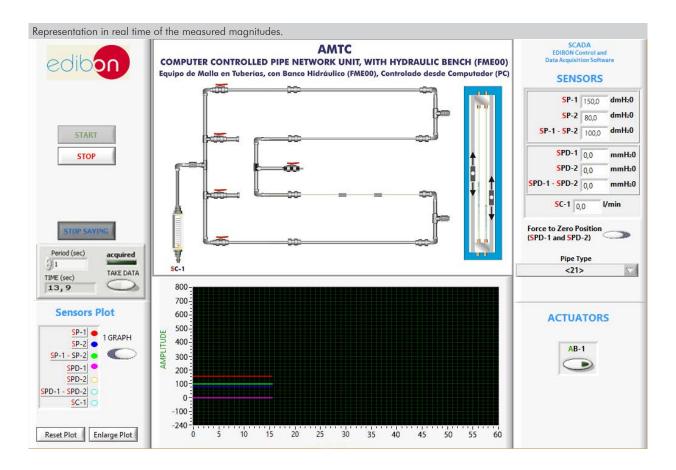
- AMT. Pipe Network Unit, with Hydraulics Bench (FME00).
- AMT/B. Pipe Network Unit, with Hydraulics Bench (FME00/B).
- AMT/P. Mesh in Pipe Unit.


SCADA Main screen


- Main software operation possibilities.
- (1) Sensors displays, real time values, and extra output parameters. Sensors: SPD=Displacement sensor (mmH,O). SP=Pressure sensor. SC=Flow sensor.
- (II) Actuators controls. Actuator: AB=Pump.
- (N) Channel selection and other plot parameters.
- (V) Real time graphics displays.


Software for Sensors Calibration

Example of screen



The teacher and the students can calibrate the unit with a password provided by EDIBON. The teacher can restore the factory calibration any time.

7

8

COMPLETE TECHNICAL SPECIFICATIONS (for optional items)

Additionally to the main items (1 to 6) described, we can offer, as optional, other items from 7 to 10.

All these items try to give more possibilities for:

- a) Technical and Vocational Education configuration. (ICAI and FSS)
- b) Multipost Expansions options. (MINI ESN and ESN)

a) Technical and Vocational Education configuration

(7) AMTC/ICAL. Interactive Computer Aided Instruction Software.

This complete software package consists of an Instructor Software (EDIBON Classroom Manager - ECM-SOF) totally integrated with the Student Software (EDIBON Student Labsoft - ESL-SOF). Both are interconnected so that the teacher knows at any moment what is the theoretical and practical knowledge of the students.

This software is optional and can be used additionally to items (1 to 6).

- ECM-SOF. EDIBON Classroom Manager (Instructor Software).

ECM-SOF is the application that allows the Instructor to register students, manage and assign tasks for workgroups, create own content to carry out Practical Exercises, choose one of the evaluation methods to check the Student knowledge and monitor the progression related to the planned tasks for individual students, workgroups, units, etc... so the teacher can know in real time the level of understanding of any student in the classroom

Innovative features:

- User Data Base Management.
- Administration and assignment of Workgroup, Task and Training sessions.
- Creation and Integration of Practical Exercises and Multimedia Resources.
- Custom Design of Evaluation Methods.
- · Creation and assignment of Formulas & Equations.
- Equation System Solver Engine.
- Updatable Contents.
- Report generation, User Progression Monitoring and Statistics.

- ESL-SOF. EDIBON Student Labsoft (Student Software).

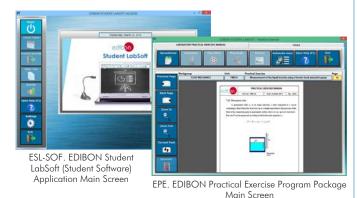
ESL-SOF is the application addressed to the Students that helps them to understand theoretical concepts by means of practical exercises and to prove their knowledge and progression by performing tests and calculations in addition to Multimedia Resources. Default planned tasks and an Open workgroup are provided by EDIBON to allow the students start working from the first session. Reports and statistics are available to know their progression at any time, as well as explanations for every exercise to reinforce the theoretically acquired technical knowledge.

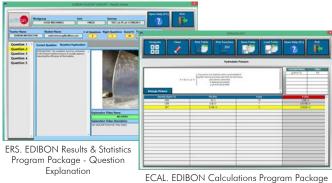
Innovative features:

- Student Log-In & Self-Registration.
- Existing Tasks checking & Monitoring.
- Default contents & scheduled tasks available to be used from the first session.
- Practical Exercises accomplishment by following the Manual provided by EDIBON.
- Evaluation Methods to prove your knowledge and progression.
- Test self-correction.
- · Calculations computing and plotting.
- Equation System Solver Engine.
- User Monitoring Learning & Printable Reports.
- Multimedia-Supported auxiliary resources.

For more information see ICAI catalogue. Click on the following link: www.edibon.com/en/files/expansion/ICAI/catalog

<u>Instructor Software</u>


reen ECAL. EDIBON Calculations Program Package Formula Editor Screen



ETTE. EDIBON Training Test & Exam Program Package - Main Screen with Numeric Result Question

Student Software

Scores Histogram

ECAL, EDIBON Calculations Program Package
Main Screen

9

Faults Simulation System (FSS) is a Software package that simulates several faults in any EDIBON Computer Controlled Unit. It is useful for Technical and Vocational level.

The "FAULTS" mode consists in causing several faults in the unit normal operation. The student must find them and solve them. There are several kinds of faults that can be grouped in the following sections:

Faults affecting the sensors measurement:

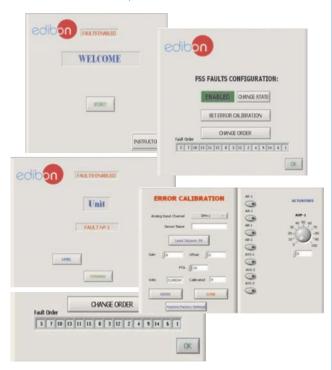
- An incorrect calibration is applied to them.
- Non-linearity.

Faults affecting the actuators:

- Actuators channels interchange at any time during the program execution
- Response reduction of an actuator.

Faults in the controls execution:

- Inversion of the performance in ON/OFF controls.
- Reduction or increase of the calculated total response.
- The action of some controls is annulled.


On/off faults:

- Several on/off faults can be included.

For more information see $\mbox{{\it FSS}}$ catalogue. Click on the following link:

www.edibon.com/en/files/expansion/FSS/catalog

Example of some screens

b) Multipost Expansions options

MINI ESN. EDIBON Mini Scada-Net System for being used with EDIBON Teaching Units.

MINI ESN. EDIBON Mini Scada-Net System allows up to 30 students to work with a Teaching Unit in any laboratory, simultaneously. It is useful for both, Higher Education and/or Technical and Vocational Education.

The MINI ESN system consists of the adaptation of any EDIBON Computer Controlled Unit with SCADA integrated in a local network.

This system allows to view/control the unit remotely, from any computer integrated in the local net (in the classroom), through the main computer connected to the unit. Then, the number of possible users who can work with the same unit is higher than in an usual way of working (usually only one).

Main characteristics:

- It allows up to 30 students to work simultaneously with the EDIBON Computer Controlled Unit with SCADA, connected in a local net.
- Open Control + Multicontrol + Real Time Control + Multi Student Post.
- Instructor controls and explains to all students at the same time.
- Any user/student can work doing "real time" control/multicontrol and visualisation.
- Instructor can see in the computer what any user/student is doing in the unit.
- Continuous communication between the instructor and all the users/students connected.

Main advantages:

- It allows an easier and quicker understanding.
- This system allows you can save time and cost.
- Future expansions with more EDIBON Units.

For more information see MINI ESN catalogue. Click on the following link:

www.edibon.com/en/files/expansion/MINI-ESN/catalog

MINI ESN. **EDIBON Mini Scada-Net System** 1 UNIT= up to 30 STUDENTS can work simultaneously Computer Controlled Pipe Network Unit, with Hydraulics Bench (FME00) (AMTC) Software for: Computer Control Control Data Acquisition Interface Box Data Management nstructors Mini Scada-Net Central Software Computer LOCAL NET FOR 30 STUDENTS OPEN CONTROL Note: The MINI ESN system can be used with MULTICONTROL any EDIBON computer REAL TIME CONTROL controlled unit MULTI STUDENT POST

10 ESN. EDIBON Scada-Net Systems.

This unit can be integrated, in the future, into a Complete Laboratory with many Units and many Students.

10

For more information see **ESN** catalogue. Click on the following link:

www.edibon.com/en/files/expansion/ESN/catalog

ORDER INFORMATION

Main items (always included in the supply)

Minimum supply always includes:

- ① Unit: AMTC. Computer Controlled Pipe Network Unit, with Hydraulics Bench (FME00).
- 2 AMTC/CIB. Control Interface Box.
- 3 DAB. Data Acquisition Board.
- AMTC/CCSOF. Computer Control + Data Acquisition + Data Management Software.
- (5) Cables and Accessories, for normal operation.
- Manuals.

*IMPORTANT: Under AMTC we always supply all the elements for immediate running as 1, 2, 3, 4, 5 and 6.

Optional items (supplied under specific order)

- a) Technical and Vocational Education configuration
- ② AMTC/ICAI. Interactive Computer Aided Instruction Software.
- **8** AMTC/FSS. Faults Simulation System.

b) Multipost Expansions options

- MINI ESN. EDIBON Mini Scada-Net System for being used with EDIBON Teaching Units.
- 10 ESN. EDIBON Scada-Net Systems.

TENDER SPECIFICATIONS (for main items)

①AMTC. Unit:

Anodized aluminum frame and panels made of painted steel.

The unit includes wheels to facilitate its mobility.

Main metallic elements made of stainless steel

Diagram in the front panel with distribution of the elements similar to the real one.

Pipe network.

Lateral panel where all test elements are located.

Test pipes:

Aluminum pipe, 16 mm outer diameter. PVC pipe, 25 mm outer diameter. PVC pipe, 16 mm outer diameter. PVC pipe, 20 mm outer diameter.

Methacrylate pipe, 16 mm outer diameter.

Test connections

Connection of 4 pipes with drain or outlet valve. Connection of 3 pipes. Straight connection of a pipe with outlet valve.

Straight Connection of a pipe with outlet valve.

Pipe connection with outlet pipe in the shape of a siphon.

Connection of 2 pipes with outlet valve. (3 units).

Connection of 2 pipes with pressure taking.

Connection of 2 pipes without pressure taking.

Pressure takings in the test elements. Valves for distributing the flow to the network.

Valves tor distributing the tlow to the network.

Two magnetic displacement sensors, range: 0 – 1 m. Two water manometers, length: 1000 mm.

Two pressure sensors, range: 0 – 30 PSI.

Flow sensor, range: 2 – 150 I/min.

- Hydraulics Bench (FME00):

Mobile Hydraulics Bench, made in polyester reinforced with fibreglass, and mounted on wheels for its mobility.

Centrifugal pump, computer controlled, 0.37 KW, 30 – 80 I/min at 20.1 – 12.8 m.

Impeller made in stainless steel.

Sump tank, capacity: 165

Small channel, capacity: 8 1.

Flow measurement: volumetric tank, gauged from 0 to 7 I for low flow values and from 0 to 40 I for high flow values.

Level tube with a scale that shows the water level in the upper tank.

Control valve for regulating the flow.

Manufactured with corrosion resistant materials ensuring a long life of the unit. The complete unit includes as well:

Advanced Real-Time SCADA

Open Control + Multicontrol + Real-Time Control. Specialized EDIBON Control Software based on LabVIEW.

National Instruments Data Acquisition board (250 KS/s, kilo samples per second).

Calibration exercises, which are included, teach the user how to calibrate a sensor and the importance of checking the accuracy of the sensors before taking measurements.

Projector and/or electronic whiteboard compatibility allows the unit to be explained and demonstrated to an entire class at one time.

Capable of doing applied research, real industrial simulation, training courses, etc.

Remote operation and control by the user and remote control for EDIBON technical support, are always included. Totally safe, utilizing 4 safety systems (Mechanical, Electrical, Electronic & Software).

Designed and manufactured under several quality standards.

Optional ICAI software to create, edit and carry out practical exercises, tests, exams, calculations, etc. Apart from monitoring user's knowledge and

progress reached.

This unit has been designed for future expansion and integration. A common expansion is the EDIBON Scada-Net (ESN) System which enables multiple students to simultaneously operate many units in a network.

②AMTC/CIB. Control Interface Box:

The Control Interface Box is part of the SCADA system. Control interface box with process diagram in the front panel. The unit control elements are permanently computer controlled.

Simultaneous visualization in the computer of all parameters involved in the process.

Calibration of all sensors involved in the process.

Real time curves representation about system responses.

All the actuators' values can be changed at any time from the keyboard allowing the analysis about curves and responses of the whole process. Shield and filtered signals to avoid external interferences.

Real time computer control with flexibility of modifications from the computer keyboard of the parameters, at any moment during the process.

Real time computer control for parameters involved in the process simultaneously.

Open control allowing modifications, at any moment and in real time, of parameters involved in the process simultaneously.

Three safety levels, one mechanical in the unit, another electronic in the control interface and the third one in the control software.

③DAB. Data Acquisition Board:

The Data Acquisition board is part of the SCADA system.
PCI Express Data acquisition board (National Instruments) to be placed in a computer slot.
Analog input: Channels= 16 single-ended or 8 differential. Resolution=16 bits, 1 in 65536. Sampling rate up to: 250 KS/s (kilo samples per second).
Analog output: Channels=2. Resolution=16 bits, 1 in 65536.

Digital Input/Output: Channels=24 inputs/outputs.

The Data Acquisition board model may change at any moment, providing the same or better features than those required for the unit.

@AMTC/CCSOF. Computer Control +Data Acquisition+Data Management Software:

The three softwares are part of the SCADA system.

Compatible with the industry standards.

Flexible, open and multicontrol software, developed with actual windows graphic systems, acting simultaneously on all process parameters.

Management, processing, comparison and storage of data

Sampling velocity up to 250 KS/s (kilo samples per second).

Calibration system for the sensors involved in the process.

It allows the registration of the alarms state and the graphic representation in real time.

Open software, allowing the teacher to modify texts, instructions. Teacher's and student's passwords to facilitate the teacher's control on the student, and allowing the access to different work levels.

This unit allows the 30 students of the classroom to visualize simultaneously all the results and the manipulation of the unit, during the process, by using a projector or an electronic whiteboard.

Cables and Accessories, for normal operation.

6Manuals:

This unit is supplied with 8 manuals: Required Services, Assembly and Installation, Interface and Control Software, Starting-up, Safety, Maintenance, Calibration & Practices Manuals.

Exercises and Practical Possibilities to be done with the Main Items

- 1.- Head losses in a PVC pipe.
- 2.- Head losses in an aluminum pipe.
- 3.- Head losses in a methacrylate pipe.
- 4.- Study of head losses in pipes of the same material.
- 5.- Study of head losses in function of the material.
- 6.- Friction coefficient in a PVC pipe.
- 7.- Friction coefficient in an aluminum pipe.
- 8.- Friction coefficient in a methacrylate pipe.
- 9.- Study of the friction coefficient in function of the material.
- 10.-Study of the friction coefficient in function of the diameter.
- 11.-Parallel network configuration for pipes of same material and different diameter.
- 12.-Parallel network configuration for pipes of different material and same diameter.
- 13.-Series network configuration for pipes of different material and different diameter.
- 14.-Series network configuration for pipes of different material and same diameter.

Additional practical possibilities:

15.-Sensors calibration.

Other possibilities to be done with this Unit:

16.-Many students view results simultaneously.

To view all results in real time in the classroom by means of a projector or an electronic whiteboard.

17.-Open Control, Multicontrol and Real Time Control.

This unit allows intrinsically and/or extrinsically to change the span, gains; proportional, integral, derivative parameters; etc, in real time.

- 18.-The Computer Control System with SCADA allows a real industrial simulation.
- 19.-This unit is totally safe as uses mechanical, electrical/electronic, and software safety devices.
- 20.-This unit can be used for doing applied research.
- 21.-This unit can be used for giving training courses to Industries even to other Technical Education Institutions.
- 22.-Control of the AMTC unit process through the control interface box without the computer.
- 23.-Visualization of all the sensors values used in the AMTC unit process.
- Several other exercises can be done and designed by the user.

TENDER SPECIFICATIONS (for optional items)

a) Technical and Vocational Education configuration

②AMTC/ICAI. Interactive Computer Aided Instruction Software.

This complete software package consists of an Instructor Software (EDIBON Classroom Manager - ECM-SOF) totally integrated with the Student Software (EDIBON Student Labsoft - ESL-SOF). Both are interconnected so that the teacher knows at any moment what is the theoretical and practical knowledge of the students.

- ECM-SOF. EDIBON Classroom Manager (Instructor Software).

ECM-SOF is the application that allows the Instructor to register students, manage and assign tasks for workgroups, create own content to carry out Practical Exercises, choose one of the evaluation methods to check the Student knowledge and monitor the progression related to the planned tasks for individual students, workgroups, units, etc...so the teacher can know in real time the level of understanding of any student in the classroom.

Innovative features:

- User Data Base Management.
- Administration and assignment of Workgroup, Task and Training sessions.
- Creation and Integration of Practical Exercises and Multimedia Resources.
- Custom Design of Evaluation Methods.
- Creation and assignment of Formulas & Equations.
- Equation System Solver Engine.
- Updatable Contents.
- Report generation, User Progression Monitoring and Statistics.
- ESL-SOF. EDIBON Student Labsoft (Student Software).

ESL-SOF is the application addressed to the Students that helps them to understand theoretical concepts by means of practical exercises and to prove their knowledge and progression by performing tests and calculations in addition to Multimedia Resources. Default planned tasks and an Open workgroup are provided by EDIBON to allow the students start working from the first session. Reports and statistics are available to know their progression at any time, as well as explanations for every exercise to reinforce the theoretically acquired technical knowledge.

Innovative features:

- Student Log-In & Self-Registration.
- Existing Tasks checking & Monitoring.
- Default contents & scheduled tasks available to be used from the first session.
- Practical Exercises accomplishment by following the Manual provided by EDIBON.
- Evaluation Methods to prove your knowledge and progression.
- Test self-correction.
- Calculations computing and plotting.
- Equation System Solver Engine.
- User Monitoring Learning & Printable Reports.
- Multimedia-Supported auxiliary resources.

8 AMTC/FSS. Faults Simulation System.

Faults Simulation System (FSS) is a Software package that simulates several faults in any EDIBON Computer Controlled Unit.

The "FAULTS" mode consists in causing several faults in the unit normal operation. The student must find them and solve them.

There are several kinds of faults that can be grouped in the following sections:

Faults affecting the sensors measurement:

- An incorrect calibration is applied to them.
- Non-linearity.

Faults affecting the actuators:

- Actuators channels interchange at any time during the program execution.
- Response reduction of an actuator.

Faults in the controls execution:

- Inversion of the performance in ON/OFF controls.
- Reduction or increase of the calculated total response.
- The action of some controls is annulled.

On/off faults:

- Several on/off faults can be included.

b) Multipost Expansions options

MINI ESN. EDIBON Mini Scada-Net System for being used with EDIBON Teaching Units.

MINI ESN. EDIBON Mini Scada-Net System allows up to 30 students to work with a Teaching Unit in any laboratory, simultaneously.

The MINI ESN system consists of the adaptation of any EDIBON Computer Controlled Unit with SCADA integrated in a local network.

This system allows to view/control the unit remotely, from any computer integrated in the local net (in the classroom), through the main computer connected to the unit.

Main characteristics:

- It allows up to 30 students to work simultaneously with the EDIBON Computer Controlled Unit with SCADA, connected in a local net.
- Open Control + Multicontrol + Real Time Control + Multi Student Post.
- Instructor controls and explains to all students at the same time.
- Any user/student can work doing "real time" control/multicontrol and visualisation.
- Instructor can see in the computer what any user/student is doing in the unit.
- Continuous communication between the instructor and all the users/students connected.

Main advantages:

- It allows an easier and quicker understanding.
- This system allows you can save time and cost.
- Future expansions with more EDIBON Units.

The system basically will consist of:

This system is used with a Computer Controlled Unit.

- Instructor's computer.
- Students' computers.
- Local Network
- Unit-Control Interface adaptation.
- Unit Software adaptation.
- Webcam.
- MINI ESN Software to control the whole system.
- Cables and accessories required for a normal operation.

* Specifications subject to change without previous notice, due to the convenience of improvement of the product.

C/ Julio Cervera, 10-12-14. Móstoles Tecnológico. 28935 MÓSTOLES. (Madrid). ESPAÑA - SPAIN. Tel.: 34-91-6199363 Fax: 34-91-6198647

E-mail: edibon@edibon.com Web: www.edibon.com

Edition: ED01/20 Date: August/2020

REPRESENTATIVE:		