

Computer Controlled **Hydrogenation Unit,** with SCADA and PID Control

1 Unit: AEHC. Computer Controlled Hydrogenation Unit

Key features:

- > Advanced Real-Time SCADA and PID Control.
- Open Control + Multicontrol + Real-Time Control.
- > Specialized EDIBON Control Software based on LabVIEW.
- > National Instruments Data Acquisition board (250 KS/s, kilo samples per second).
- Calibration exercises, which are included, teach the user how to calibrate a sensor and the importance of checking the accuracy of the sensors before taking measurements.
- > Projector and/or electronic whiteboard compatibility allows the unit to be explained and demonstrated to an entire class at one time.
- > Capable of doing applied research, real industrial simulation, training courses, etc.
- Remote operation and control by the user and remote control for EDIBON technical support, are always included.
- > Totally safe, utilizing 4 safety systems (Mechanical, Electrical, Electronic & Software).
- > Designed and manufactured under several quality standards.
- > Optional ICAI software to create, edit and carry out practical exercises, tests, exams, calculations, etc. Apart from monitoring user's knowledge and progress reached.
- > This unit has been designed for future expansion and integration. A common expansion is the EDIBON Scada-Net (ESN) System which enables multiple students to simultaneously operate many units in a network.

OPEN CONTROL
MULTICONTROL
REAL TIME CONTROL

www.edibon.com

⇒PRODUCTS ⇒12.-FOOD & WATER TECHNOLOGIES

For more information about Key Features, click here

(environmental management)

INTRODUCTION

Hydrogenation is a type of chemical reaction (redox) whose final visible result is the addition of hydrogen (H_2) to another compound. The usual targets of this reaction are unsaturated organic compounds. Most hydrogenations are produced by the direct addition of diatomic hydrogen under pressure and in the presence of a catalyst.

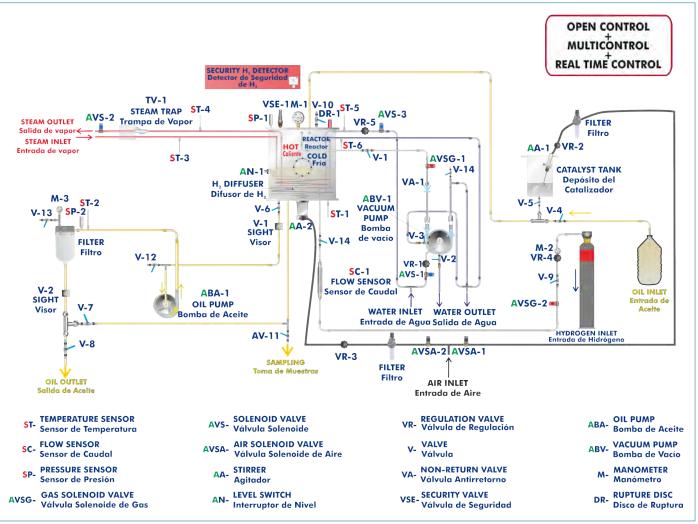
A typical example of hydrogenation is the addition of hydrogen to the double bonds, converting alkenes into alkanes.

Hydrogenation has important applications in the pharmaceutical, petrochemical and food industries.

In the vegetable oil industry, hydrogenation is a chemical process by which oils are transformed into solid fats by the addition of hydrogen at high pressures and temperatures, and in the presence of a catalyst.

The Computer Controlled Hydrogenation Unit (PC), "AEHC", allows the study of the hydrogenation process in a discontinuous process, by adjusting the degree of saturation of edible oils.

GENERAL DESCRIPTION


The Computer Controlled Hydrogenation Unit (PC), "AEHC", unit is a batch processing vessel, which is used to adjust the degree of saturation of 22 l. batches of edible oils. It is easy and safe to use.

The Computer Controlled Hydrogenation Unit (PC), "AEHC", unit for oil hydrogenation has the following main elements:

- Catalyst tank where the catalyst is mixed with oil.
- Catalyst tank agitator to mix the catalyst and the oil.
- Hydrogenation vessel (reactor) where the three elements are mixed (oil, hydrogen and catalyst) and the reaction takes place.
- Reactor agitator to promote hydrogenation.
- Hydrogen diffuser for introducing hydrogen into the reactor.
- Heating coil through which steam at high temperature circulates in order to heat up the oil until the reaction starts.
- Cooling coil through which water circulates in order to limit the heating of the exothermic reaction.
- Vacuum pump for vacuum creation inside the reactor.
- Oil pump (filter pump) to extract oil from the reactor and take it to the filter.
- Filter where the hydrogenated oil is filtered to recover the catalyst.
- Visors, filters, regulators, ball valves, solenoid valves, non-return valve, security valve, rupture disc, hydrogen detector, manometers, temperature, pressure, level and flow sensors.

This Computer Controlled Unit is supplied with the EDIBON Computer Control System (SCADA), and includes: The unit itself + a Control Interface Box + a Data Acquisition Board + Computer Control, Data Acquisition and Data Management Software Packages, for controlling the process and all parameters involved in the process.

PROCESS DIAGRAM AND UNIT ELEMENTS ALLOCATION

COMPLETE TECHNICAL SPECIFICATIONS (for main items)

With this unit there are several options and possibilities:

- Main items: 1, 2, 3, 4, 5 and 6. - Optional items: 7, 8, and 9.

Let us describe first the main items (1 to 6):

①AEHC. Unit:

Anodized aluminium structure and panels in painted steel.

Main metallic elements in stainless steel.

The unit includes wheels to facilitate its mobility.

Diagram in the front panel with similar distribution to the elements in the real unit.

All equipment in contact with the process fluid in stainless steel.

Stainless steel hydrogenation vessel (reactor):

Total volume: 30 l. Working volume: 22 l.

Minimum working volume: 14 l.

Heating coil. Cooling coil.

Maximum pressure: 6.3 bar. Maximum working pressure: 3 bar.

Stainless steel hydrogen diffuser.

Level switch. Two visors.

Stainless steel exhaust valve rated at 4 bar of pressure.

Stainless steel rupture disc rated at 6.3 bar of pressure.

Variable speed agitator for the hydrogenation vessel: pneumatic agitator.

Stainless steel catalyst tank: volume: 6.5 l.

Variable speed agitator for the catalyst tank: pneumatic agitator.

Liquid ring vacuum pump:

It enables the suction of gases even in the presence of liquids.

Gas isothermic compression.

Gases are never in contact with lubricants.

Dry flow: 65m³/h. Wet flow: 87 m³/h.

Absolute pressure reached: 0.6 bar.

Oil pump, centrifugal type:

Flow (Q)= 100 I./min. Maximum pressure: 2.75 bar. Working temperature: 150 - 160 C°.

Filter.

Security H₂ detector.

Sensors:

Six temperature sensors.

Two pressure sensors.

Flow sensor.

Three manometers.

Gas, water and air solenoid valves.

Security valves.

Flameproof electrical equipment. Safe zone controls. Accurate control of hydrogen addition.

For the design of this unit, security has been especially taken into account, thus, it contains a hydrogen detector. In case of leak, the whole process is stopped and the input of hydrogen is cut off, the security valve is rated at 4 bar and the rupture disc at 6 bar.

The complete unit includes as well:

Advanced Real-Time SCADA and PID Control.

Open Control + Multicontrol + Real-Time Control.

Specialized EDIBON Control Software based on LabVIEW.

National Instruments Data Acquisition board (250 KS/s, kilo samples per second).

Calibration exercises, which are included, teach the user how to calibrate a sensor and the importance of checking the accuracy of the sensors before taking measurements.

Projector and/or electronic whiteboard compatibility allows the unit to be explained and demonstrated to an entire class at one time.

Capable of doing applied research, real industrial simulation, training courses, etc.

Remote operation and control by the user and remote control for EDIBON technical support, are always included.

Totally safe, utilizing 4 safety systems (Mechanical, Electrical, Electronic & Software).

Designed and manufactured under several quality standards.

Optional ICAI software to create, edit and carry out practical exercises, tests, exams, calculations, etc. Apart from monitoring user's knowledge and progress reached.

This unit has been designed for future expansion and integration. A common expansion is the EDIBON Scada-Net (ESN) System which enables multiple students to simultaneously operate many units in a network.

Unit: AEHC

② AEHC/CIB. Control Interface Box:

The Control Interface Box is part of the SCADA system.

Control interface box with process diagram in the front panel and with the same distribution that the different elements located in the unit, for an easy understanding by the student.

All sensors, with their respective signals, are properly manipulated from -10V. to +10V. computer output. Sensors connectors in the interface have different pines numbers (from 2 to 16), to avoid connection errors.

Single cable between the control interface box and computer.

The unit control elements are permanently computer controlled, without necessity of changes or connections during the whole process test procedure.

Simultaneous visualization in the computer of all parameters involved in the process. Calibration of all sensors involved in the process.

Real time curves representation about system responses.

Storage of all the process data and results in a file.

Graphic representation, in real time, of all the process/system responses.

All the actuators' values can be changed at any time from the keyboard allowing the analysis about curves and responses of the whole process.

All the actuators and sensors values and their responses are displayed on only one screen in the

Shield and filtered signals to avoid external interferences.

Real time PID control with flexibility of modifications from the computer keyboard of the PID parameters, at any moment during the process.

Real time PID and on/off control for pumps, compressors, heating elements, control valves, etc.

Real time PID control for parameters involved in the process simultaneously

Proportional control, integral control and derivative control, based on the real PID mathematical **formula, by changing the values, at any time**, of the three control constants (proportional, integral and derivative constants).

Open control allowing modifications, at any moment and in real time, of parameters involved in the process simultaneously.

Possibility of automatization of the actuators involved in the process.

Three safety levels, one mechanical in the unit, another electronic in the control interface and the third one in the control software.

3 DAB. Data Acquisition Board:

The Data Acquisition board is part of the SCADA system.

PCI Express Data acquisition board (National Instruments) to be placed in a computer slot. Bus PCI Express.

Analog input:

Number of channels = 16 single-ended or 8 differential. Resolution = 16 bits, 1 in 65536.

Sampling rate up to: $\underline{250 \text{ KS/s}}$ (kilo samples per second). Input range (V)= $\pm 10 \text{ V}$. Data transfers=DMA, interrupts, programmed I/O. DMA channels=6.

Analog output:

Number of channels=2. Resolution=16 bits, 1 in 65536.

Maximum output rate up to: 900 KS/s.

Output range $M = \pm 10 \text{ V}$. Data transfers = DMA, interrupts, programmed I/0.

Digital Input/Output:

Number of channels=24 inputs/outputs. D0 or DI Sample Clock frequency: 0 to 100 MHz.

Timing: Number of Counter/timers=4. Resolution: Counter/timers: 32 bits.

The Data Acquisition board model may change at any moment, providing the same or better features than those required for the unit.

Software:

The three softwares are part of the SCADA system.

Compatible with actual Windows operating systems. Graphic and intuitive simulation of the process in screen. **Compatible with the industry standards**.

Registration and visualization of all process variables in an automatic and simultaneous way.

Flexible, open and multicontrol software, developed with actual windows graphic systems, acting simultaneously on all process parameters.

Analog and digital PID control.

PID menu and set point selection required in the whole work range.

Management, processing, comparison and storage of data.

Sampling velocity up to 250 KS/s (kilo samples per second). Calibration system for the sensors involved in the process.

It allows the registration of the alarms state and the graphic representation in real time.

Comparative analysis of the obtained data, after the process and modification of the conditions

Open software, allowing the teacher to modify texts, instructions. Teacher's and student's passwords to facilitate the teacher's control on the student, and allowing the access to different work levels.

This unit allows the 30 students of the classroom to visualize simultaneously all the results and the manipulation of the unit, during the process, by using a projector or an electronic whiteboard.

⑤ Cables and Accessories, for normal operation.

This unit is **supplied with 8 manuals**: Required Services, Assembly and Installation, Interface and Control Software, Starting-up, Safety, Maintenance, Calibration & Practices Manuals.


*References 1 to 6 are the main items: AEHC + AEHC/CIB + DAB + AEHC/CCSOF + Cables and Accessories + Manuals are included in the minimum supply for enabling normal and full operation.

AEHC/CIB

DAB

AEHC/CCSOF

EXERCISES AND PRACTICAL POSSIBILITIES TO BE DONE WITH THE MAIN ITEMS

- 1.- Study of the effect of process temperature.
- 2.- Study of the effect of degree of agitation.
- 3.- Study of the effect of hydrogen gas pressure.
- Operation of small scale version of the industrial hydrogenation process.
- 5.- To determine the optimum catalyst dosage.
- 6.- To demonstrate the operation of the filter for catalyst recovery.
- 7.- Study of the effect of catalyst type.

Additional practical possibilities:

8.- Sensors calibration.

Other possibilities to be done with this Unit:

- Many students view results simultaneously.
 To view all results in real time in the classroom by means of a projector or an electronic whiteboard.
- 10.- Open Control, Multicontrol and Real Time Control. This unit allows intrinsically and/or extrinsically to change the span, gains; proportional, integral, derivative parameters; etc, in real time.
- 11.- The Computer Control System with SCADA and PID Control allow a real industrial simulation.
- 12.- This unit is totally safe as uses mechanical, electrical/electronic, and software safety devices.
- 13.- This unit can be used for doing applied research.

- 14.- This unit can be used for giving training courses to Industries even to other Technical Education Institutions.
- 15.- Control of the AEHC unit process through the control interface box without the computer.
- Visualization of all the sensors values used in the AEHC unit process.
- Several other exercises can be done and designed by the user.

REQUIRED SERVICES

- Electrical supply: three-phase, 380 VAC 400 VAC/50 Hz or 190 VAC 240 VAC/60 Hz.
- Compressed air.
- Water supply and drain.
- Computer (PC).

REQUIRED ELEMENTS (Not included)

 Steam supply (EDIBON Steam generator (TGV/6KW) or similar generator).

DIMENSIONS AND WEIGHTS

AEHC:

Unit:

- Dimensions: 1400 x 1100 x 2000 mm approx.

(55.11 x 43.30 x 78.74 inches approx.)

- Weight: 250 Kg approx.

(551 pounds approx.).

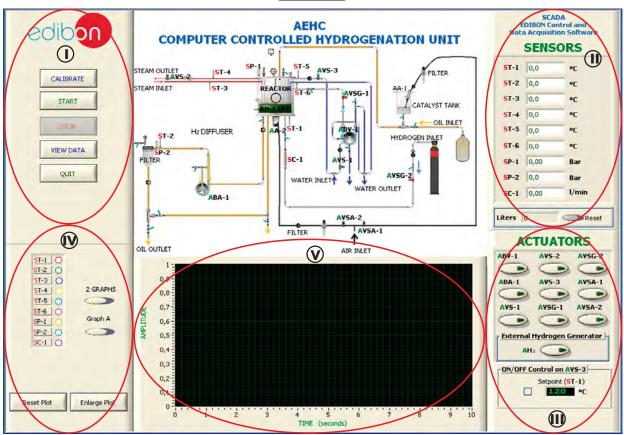
Control Interface Box:

- Dimensions:490 x 330 x 310 mm approx.

(19.29 x 12.99 x 12.20 inches approx.).

- Weight: 10 Kg approx.

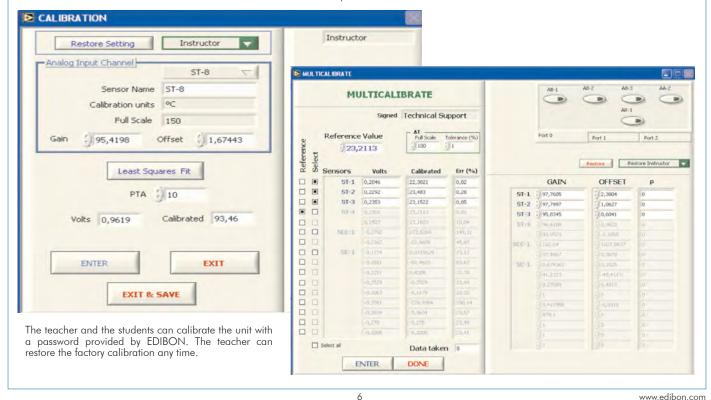
(22 pounds approx.).


REQUIRED CONSUMABLES (Not included)

5

- Hydrogenation gas cylinder of $99.75\ \%$ purity or better.

www.edibon.com


SCADA and PID Control Main screen

- Main software operation possibilities.
- (11) Sensors displays, real time values, and extra output parameters. Sensors: ST=Temperature sensor. SP=Pressure sensor. SC=Flow sensor. AN=Level switch.
- (iller pump). AVS=Solenoid valve. AVSG=Gas solenoid valve. AVSA=Air solenoid valve. AVSA=Air solenoid valve. AA=Stirrer.
- (N) Channel selection and other plot parameters.
- Real time graphics displays.

Software for Sensors Calibration

Example of screen

COMPLETE TECHNICAL SPECIFICATIONS (for optional items)

Additionally to the main items (1 to 6) described, we can offer, as optional, other items from 7 to 9.

All these items try to give more possibilities for:

- a) Technical and Vocational Education configuration. (ICAI)
- b) Multipost Expansions options. (MINI ESN and ESN)

a) Technical and Vocational Education configuration

(7) AEHC/ICAI. Interactive Computer Aided Instruction Software.

This complete software package consists of an Instructor Software (EDIBON Classroom Manager - ECM-SOF) totally integrated with the Student Software (EDIBON Student Labsoft - ESL-SOF). Both are interconnected so that the teacher knows at any moment what is the theoretical and practical knowledge of the students.

This software is optional and can be used additionally to items (1 to 6).

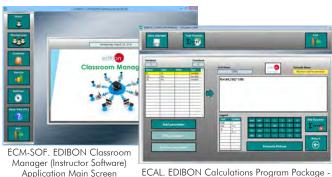
- ECM-SOF. EDIBON Classroom Manager (Instructor Software).

ECM-SOF is the application that allows the Instructor to register students, manage and assign tasks for workgroups, create own content to carry out Practical Exercises, choose one of the evaluation methods to check the Student knowledge and monitor the progression related to the planned tasks for individual students, workgroups, units, etc... so the teacher can know in real time the level of understanding of any student in the classroom

Innovative features:

- User Data Base Management.
- · Administration and assignment of Workgroup, Task and Training sessions.
- Creation and Integration of Practical Exercises and Multimedia Resources.
- · Custom Design of Evaluation Methods.
- · Creation and assignment of Formulas & Equations.
- Equation System Solver Engine.
- Updatable Contents.
- Report generation, User Progression Monitoring and Statistics.

- ESL-SOF. EDIBON Student Labsoft (Student Software).


ESL-SOF is the application addressed to the Students that helps them to understand theoretical concepts by means of practical exercises and to prove their knowledge and progression by performing tests and calculations in addition to Multimedia Resources. Default planned tasks and an Open workgroup are provided by EDIBON to allow the students start working from the first session. Reports and statistics are available to know their progression at any time, as well as explanations for every exercise to reinforce the theoretically acquired technical knowledge.

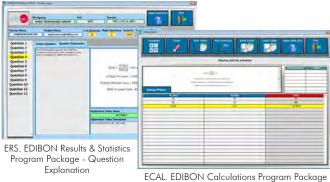
Innovative features:

- Student Log-In & Self-Registration.
- · Existing Tasks checking & Monitoring.
- · Default contents & scheduled tasks available to be used from the first session.
- Practical Exercises accomplishment by following the Manual provided by EDIBON.
- Evaluation Methods to prove your knowledge and progression.
- Test self-correction.
- · Calculations computing and plotting.
- Equation System Solver Engine.
- User Monitoring Learning & Printable Reports.
- Multimedia-Supported auxiliary resources.

For more information see ICAI catalogue. Click on the following link: www.edibon.com/en/files/expansion/ICAI/catalog

Instructor Software

ECAL. EDIBON Calculations Program Package -Formula Editor Screen


ETTE. EDIBON Training Test & Exam Program Package - Main Screen with Numeric Result Question

Student Software

Scores Histogram

EPE. EDIBON Practical Exercise Program Package Main Screen

Main Screen

7

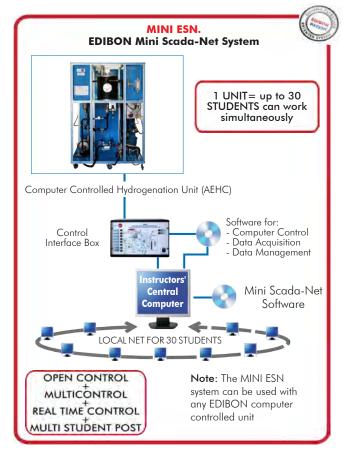
b) Multipost Expansions options

® MINI ESN. EDIBON Mini Scada-Net System for being used with EDIBON Teaching Units.

MINI ESN. EDIBON Mini Scada-Net System allows up to 30 students to work with a Teaching Unit in any laboratory, simultaneously. It is useful for both, Higher Education and/or Technical and Vocational Education.

The MINI ESN system consists of the adaptation of any EDIBON Computer Controlled Unit with SCADA and PID Control integrated in a local network.

This system allows to view/control the unit remotely, from any computer integrated in the local net (in the classroom), through the main computer connected to the unit. Then, the number of possible users who can work with the same unit is higher than in an usual way of working (usually only one).


Main characteristics:

- It allows up to 30 students to work simultaneously with the EDIBON Computer Controlled Unit with SCADA and PID Control, connected in a local net.
- Open Control + Multicontrol + Real Time Control + Multi Student Post.
- Instructor controls and explains to all students at the same time.
- Any user/student can work doing "real time" control/multicontrol and visualisation.
- Instructor can see in the computer what any user/student is doing in the unit.
- Continuous communication between the instructor and all the users/students connected.

Main advantages:

- It allows an easier and quicker understanding.
- This system allows you can save time and cost.
- Future expansions with more EDIBON Units.

For more information see **MINI ESN** catalogue. Click on the following link: www.edibon.com/en/files/expansion/MINI-ESN/catalog

This unit can be integrated, in the future, into a Complete Laboratory with many Units and many Students.

For more information see **ESN** catalogue. Click on the following link:

www.edibon.com/en/files/expansion/ESN/catalog

ORDER INFORMATION

Main items (always included in the supply)

Minimum supply always includes:

- ①Unit: AEHC. Computer Controlled Hydrogenation Unit.
- ②AEHC/CIB. Control Interface Box.
- ③DAB. Data Acquisition Board.
- AEHC/CCSOF. PID Computer Control + Data Acquisition + Data Management Software.
- ⑤ Cables and Accessories, for normal operation.
- **6**Manuals.

*IMPORTANT: Under AEHC we always supply all the elements for immediate running as 1, 2, 3, 4, 5 and 6.

Optional items (supplied under specific order)

- a) Technical and Vocational Education configuration
- ② AEHC/ICAI. Interactive Computer Aided Instruction Software.
 - b) Multipost Expansions options
- MINI ESN. EDIBON Mini Scada-Net System for being used with EDIBON Teaching Units.
- **⊚** ESN. EDIBON Scada-Net Systems.

www.edibon.com

9

TENDER SPECIFICATIONS (for main items) ①AEHC. Unit: Anodized aluminium structure and panels in painted steel. Main metallic elements in stainless steel. The unit includes wheels to facilitate its mobility. Diagram in the front panel with similar distribution to the elements in the real unit. All equipment in contact with the process fluid in stainless steel. Stainless steel hydrogenation vessel (reactor): Total volume: 30 l. Working volume: 22 l. Minimum working volume: 14 l. Heating coil. Cooling coil. Maximum pressure: 6.3 bar. Maximum working pressure: 3 bar. Stainless steel hydrogen diffuser. Level switch. Two visors Stainless steel exhaust valve rated at 4 bar of pressure. Stainless steel rupture disc rated at 6.3 bar of pressure. Variable speed agitator for the hydrogenation vessel: pneumatic agitator. Stainless steel catalyst tank: volume: 6.5 l. Variable speed agitator for the catalyst tank: pneumatic agitator. Liquid ring vacuum pump: It enables the suction of gases even in the presence of liquids. Gas isothermic compression. Gases are never in contact with lubricants. Dry flow: 65m³/h. Wet flow: 87 m³/h. Absolute pressure reached: 0.6 bar. Oil pump, centrifugal type: Flow (Q) = 100 l./min. Maximum pressure: 2.75 bar. Working temperature: 150 - 160 C°. Filter. Security H₂ detector. Sensors: Six temperature sensors. Two pressure sensors. Flow sensor. Three manometers Gas, water and air solenoid valves. Security valves. Flameproof electrical equipment. Safe zone controls. Accurate control of hydrogen addition. For the design of this unit, security has been especially taken into account, thus, it contains a hydrogen detector. In case of leak, the whole process is stopped and the input of hydrogen is cut off, the security valve is rated at 4 bar and the rupture also at 6 bar. The complete unit includes as well: Advanced Real-Time SCADA and PID Control. Open Control + Multicontrol + Real-Time Control. Specialized EDIBON Control Software based on LabVIEW. National Instruments Data Acquisition board (250 KS/s, kilo samples per second). Calibration exercises, which are included, teach the user how to calibrate a sensor and the importance of checking the accuracy of the sensors before Calibration exercises, which are included, teach the user now to calibrate a sensor and the importance of checking the accuracy of the sensors before taking measurements. Projector and/or electronic whiteboard compatibility allows the unit to be explained and demonstrated to an entire class at one time. Capable of doing applied research, real industrial simulation, training courses, etc. Remote operation and control by the user and remote control for EDIBON technical support, are always included. Totally safe, utilizing 4 safety systems (Mechanical, Electrical, Electronic & Software). Designed and manufactured under several quality standards. Optional ICAI software to create, edit and carry out practical exercises, tests, exams, calculations, etc. Apart from monitoring user's knowledge and progress reached. This unit has been designed for future expansion and integration. A common expansion is the EDIBON Scada-Net (ESN) System which enables multiple students to simultaneously operate many units in a network. students to simultaneously operate many units in a networ **②AEHC/CIB.** Control Interface Box: The Control Interface Box is part of the SCADA system. Control interface box with process diagram in the front panel. Control interface box with process diagram in the front panel. The unit control elements are permanently computer controlled. Simultaneous visualization in the computer of all parameters involved in the process. Calibration of all sensors involved in the process. Real time curves representation about system responses. All the actuators' values can be changed at any time from the keyboard allowing the analysis about curves and responses of the whole process. Shield and filtered signals to avoid external interferences. Real time PID control with flexibility of modifications from the computer keyboard of the PID parameters, at any moment during the process. Real time PID control for parameters involved in the process simultaneously. Proportional control, integral control and derivative control, based on the real PID mathematical formula, by changing the values, at any time, of the three control constants (proportional, integral and derivative constants). Open control allowing modifications, at any moment and in real time, of parameters involved in the process simultaneously. Three safety levels, one mechanical in the unit, another electronic in the control interface and the third one in the control software. DABA Data Acquisition Roard:

③DAB. Data Acquisition Board:

Cables and Accessories, for normal operation.

@Manuals:

This unit is supplied with 8 manuals: Required Services, Assembly and Installation, Interface and Control Software, Starting-up, Safety, Maintenance, Calibration & Practices Manuals.

Exercises and Practical Possibilities to be done with the Main Items

- 1.- Study of the effect of process temperature.
- 2.- Study of the effect of degree of agitation.
- 3.- Study of the effect of hydrogen gas pressure.
- 4.- Operation of small scale version of the industrial hydrogenation process.
- 5.- To determine the optimum catalyst dosage.
- 6.- To demonstrate the operation of the filter for catalyst recovery.
- 7.- Study of the effect of catalyst type.

Additional practical possibilities:

8.- Sensors calibration.

Other possibilities to be done with this Unit:

9.- Many students view results simultaneously.

To view all results in real time in the classroom by means of a projector or an electronic whiteboard.

10.- Open Control, Multicontrol and Real Time Control.

This unit allows intrinsically and/or extrinsically to change the span, gains; proportional, integral, derivative parameters; etc, in real time.

11

- 11.- The Computer Control System with SCADA and PID Control allow a real industrial simulation.
- 12.- This unit is totally safe as uses mechanical, electrical/electronic, and software safety devices.
- 13.- This unit can be used for doing applied research.
- 14.- This unit can be used for giving training courses to Industries even to other Technical Education Institutions.
- 15.- Control of the AEHC unit process through the control interface box without the computer.
- 16.- Visualization of all the sensors values used in the AEHC unit process.
- Several other exercises can be done and designed by the user.

a) Technical and Vocational Education configuration

②AEHC/ICAI. Interactive Computer Aided Instruction Software.

This complete software package consists of an Instructor Software (EDIBON Classroom Manager - ECM-SOF) totally integrated with the Student Software (EDIBON Student Labsoft - ESL-SOF). Both are interconnected so that the teacher knows at any moment what is the theoretical and practical knowledge of the students.

- ECM-SOF. EDIBON Classroom Manager (Instructor Software).

ECM-SOF is the application that allows the Instructor to register students, manage and assign tasks for workgroups, create own content to carry out Practical Exercises, choose one of the evaluation methods to check the Student knowledge and monitor the progression related to the planned tasks for individual students, workgroups, units, etc...so the teacher can know in real time the level of understanding of any student in the classroom.

Innovative features:

- User Data Base Management.
- Administration and assignment of Workgroup, Task and Training sessions.
- Creation and Integration of Practical Exercises and Multimedia Resources.
- Custom Design of Evaluation Methods.
- Creation and assignment of Formulas & Equations.
- Equation System Solver Engine.
- Updatable Contents.
- Report generation, User Progression Monitoring and Statistics.
- ESL-SOF. EDIBON Student Labsoft (Student Software).

ESL-SOF is the application addressed to the Students that helps them to understand theoretical concepts by means of practical exercises and to prove their knowledge and progression by performing tests and calculations in addition to Multimedia Resources. Default planned tasks and an Open workgroup are provided by EDIBON to allow the students start working from the first session. Reports and statistics are available to know their progression at any time, as well as explanations for every exercise to reinforce the theoretically acquired technical knowledge.

Innovative features:

- Student Log-In & Self-Registration.
- Existing Tasks checking & Monitoring.
- Default contents & scheduled tasks available to be used from the first session.
- Practical Exercises accomplishment by following the Manual provided by EDIBON.
- Evaluation Methods to prove your knowledge and progression.
- · Test self-correction.
- Calculations computing and plotting.
- Equation System Solver Engine.
- User Monitoring Learning & Printable Reports.
- Multimedia-Supported auxiliary resources.

b) Multipost Expansions options

® MINI ESN. EDIBON Mini Scada-Net System for being used with EDIBON Teaching Units.

MINI ESN. EDIBON Mini Scada-Net System allows up to 30 students to work with a Teaching Unit in any laboratory, simultaneously.

The MINI ESN system consists of the adaptation of any EDIBON Computer Controlled Unit with SCADA and PID Control integrated in a local network. This system allows to view/control the unit remotely, from any computer integrated in the local net (in the classroom), through the main computer connected to the unit.

Main characteristics:

- It allows up to 30 students to work simultaneously with the EDIBON Computer Controlled Unit with SCADA and PID Control, connected in a local net.
- Open Control + Multicontrol + Real Time Control + Multi Student Post.
- Instructor controls and explains to all students at the same time.
- Any user/student can work doing "real time" control/multicontrol and visualisation.
- Instructor can see in the computer what any user/student is doing in the unit.
- Continuous communication between the instructor and all the users/students connected.

Main advantages:

- It allows an easier and quicker understanding.
- This system allows you can save time and cost.
- Future expansions with more EDIBON Units.

The system basically will consist of:

This system is used with a Computer Controlled Unit.

- Instructor's computer.
- Students' computers.
- Local Network.
- Unit-Control Interface adaptation.
- Unit Software adaptation.
- Webcam
- MINI ESN Software to control the whole system.
- Cables and accessories required for a normal operation.
- * Specifications subject to change without previous notice, due to the convenience of improvement of the product.

C/ Julio Cervera, 10-12-14. Móstoles Tecnológico. 28935 MÓSTOLES. (Madrid). ESPAÑA - SPAIN. Tel.: 34-91-6199363 Fax: 34-91-6198647

E-mail: edibon@edibon.com Web: www.edibon.com

Edition: ED01/20 Date: September/2020