

Basic methods in imaging of micro and nanostructures with AFM (Atomic Force Microscopy)

Item No. P2538000

Principle

Approaching a sharp silicon tip mounted on a cantilever to a sample surface leads to an atomic scale interaction. The result is a bend of the cantilever which is detected by a laser. In static mode the resulting deflection is used to investigate the topography of the sample surface line by line using a feedback loop. In dynamic mode the cantilever is oscillated at fixed frequency resulting in a damped amplitude near the surface. The measurement parameters (setpoint, feedback gain) play a crucial role for image quality. Their effect on the imaging quality is investigated for different nano structured samples.

Benefits

- · Investigation in static and dynamic mode
- · Modification of numerous parameters to optimize image quality
- · Perform experiment with different samples
- · Excellent price-performance ratio
- · Custom-designed for use in teaching labs
- · Microscope consists of one compact, portable instrument, no additional instruments required
- Vibration isolated for better and reproducible results

Tasks

- 1. Learn how to mount a cantilever (with tip) and approach the tip towards a sample.
- 2. Investigate the influence of the scanning parameters on the imaging quality and performance, e.g. PID gain, setpoint (force), vibrational amplitude, and scanning speed. Use both static and dynamic force mode.
- 3. Image different samples (microstructures, carbon nano tubes, skin cross-section, bacteria, CD stamper, chip structure, glass beads) by optimizing the parameters respectively.

Learning objectives

- · Atomic Force Microscopy (AFM)
- · Lennard-Jones potential
- · Imaging of nano structures
- · Static Force Mode
- · Dynamic Force Mode
- Feedback loop
- Force
- · Vibrational amplitude

Software included. Computer not provided.

Scope of supply

Compact AFM, Atomic Force Microscope

09700-99

1

